

Index
• Introduction
• History of Pascal
• Pascal Compilers
• Hello, world.
• Basics

o Program Structure
o Identifiers
o Constants
o Variables and Data Types
o Assignment and Operations
o Standard Functions
o Punctuation and Indentation
o Programming Assignment
o Solution

• Input/Output
o Input
o Output
o Formatting output
o Files
o EOLN and EOF
o Programming Assignment
o Solution

• Program Flow
o Sequential control
o Boolean Expressions
o Branching

 IF
 CASE

o Looping
 FOR..DO
 WHILE..DO
 REPEAT..UNTIL

o Programming Assignments: Fibonacci Sequence and Powers of Two
o Solutions

• Subprograms
o Procedures
o Parameters
o Functions
o Scope
o Recursion
o Forward Referencing
o Programming Assignment: the Towers of Hanoi
o Solution

• Data types
o Enumerated types
o Subranges
o 1-dimensional arrays
o Multidimensional arrays
o Records
o Pointers

• Final words

2

http://www.taoyue.com/tutorials/pascal/index.html
http://www.taoyue.com/tutorials/pascal/pas-x.html
http://www.taoyue.com/tutorials/pascal/pas5f.html
http://www.taoyue.com/tutorials/pascal/pas5e.html
http://www.taoyue.com/tutorials/pascal/pas5d.html
http://www.taoyue.com/tutorials/pascal/pas5c.html
http://www.taoyue.com/tutorials/pascal/pas5b.html
http://www.taoyue.com/tutorials/pascal/pas5a.html
http://www.taoyue.com/tutorials/pascal/pas4ga.html
http://www.taoyue.com/tutorials/pascal/pas4g.html
http://www.taoyue.com/tutorials/pascal/pas4f.html
http://www.taoyue.com/tutorials/pascal/pas4e.html
http://www.taoyue.com/tutorials/pascal/pas4d.html
http://www.taoyue.com/tutorials/pascal/pas4c.html
http://www.taoyue.com/tutorials/pascal/pas4b.html
http://www.taoyue.com/tutorials/pascal/pas4a.html
http://www.taoyue.com/tutorials/pascal/pas3ea.html
http://www.taoyue.com/tutorials/pascal/pas3e.html
http://www.taoyue.com/tutorials/pascal/pas3dc.html
http://www.taoyue.com/tutorials/pascal/pas3db.html
http://www.taoyue.com/tutorials/pascal/pas3da.html
http://www.taoyue.com/tutorials/pascal/pas3cb.html
http://www.taoyue.com/tutorials/pascal/pas3ca.html
http://www.taoyue.com/tutorials/pascal/pas3b.html
http://www.taoyue.com/tutorials/pascal/pas3a.html
http://www.taoyue.com/tutorials/pascal/pas2fa.html
http://www.taoyue.com/tutorials/pascal/pas2f.html
http://www.taoyue.com/tutorials/pascal/pas2e.html
http://www.taoyue.com/tutorials/pascal/pas2d.html
http://www.taoyue.com/tutorials/pascal/pas2c.html
http://www.taoyue.com/tutorials/pascal/pas2b.html
http://www.taoyue.com/tutorials/pascal/pas2a.html
http://www.taoyue.com/tutorials/pascal/pas1ha.html
http://www.taoyue.com/tutorials/pascal/pas1h.html
http://www.taoyue.com/tutorials/pascal/pas1g.html
http://www.taoyue.com/tutorials/pascal/pas1f.html
http://www.taoyue.com/tutorials/pascal/pas1e.html
http://www.taoyue.com/tutorials/pascal/pas1d.html
http://www.taoyue.com/tutorials/pascal/pas1c.html
http://www.taoyue.com/tutorials/pascal/pas1b.html
http://www.taoyue.com/tutorials/pascal/pas1a.html
http://www.taoyue.com/tutorials/pascal/pas00.html
http://www.taoyue.com/tutorials/pascal/compilers.html
http://www.taoyue.com/tutorials/pascal/history.html

Introduction

Welcome to Learn Pascal! This tutorial is an introduction to the Pascal simple, yet
complete, introduction to the Pascal programming language. It covers all of the syntax of
standard Pascal, including pointers.

I have tried to make things are clear as possible. If you don't understand anything, try it in
your Pascal compiler and tweak things a bit. Pascal was designed for teaching purposes,
and is a very structured and syntactically-strict language. This means the compiler will
catch more beginner errors and yield more beginner-friendly error messages than with a
shorthand-laden language such as C or PERL.

This tutorial was written for beginner programmers, so assumes no knowledge. At the
same time, a surprising number of experienced programmers have found the tutorial a
useful reference source for picking up Pascal.

We begin with some background on Pascal, an explanation of compilers, and step-by-step
instructions for getting one such compiler working on a modern Windows operating
system. The background section is informative reading, I'm told, for experienced
programmers as well as novices, but the Table of Contents will let you pick any topic if
you're already familiar with programming.

3

History of Pascal

Origins
Pascal grew out of ALGOL, a programming language intended for scientific computing.
Meeting in Zurich, an international committee designed ALGOL as a platform-independent
language. This gave them comparatively free rein in the features they could design into
ALGOL, but also made it more difficult to write compilers for it. Those were the days when
many computers lacked hardware features that we now take for granted. The lack of
compilers on many platforms, combined with its lack of pointers and many basic data
types such as characters, led to ALGOL not being widely accepted. Scientists and
engineers flocked to FORTRAN, a programming language which was available on many
platforms. ALGOL mostly faded away except as a language for describing algorithms.

Wirth Invents Pascal
In the 1960s, several computer scientists worked on extending ALGOL. One of these was
Dr. Niklaus Wirth of the Swiss Federal Institute of Technology (ETH-Zurich), a member of
the original group that created ALGOL. In 1971, he published his specification for a highly-
structured language which resembled ALGOL in many ways. He named it Pascal after the
17th-century French philosopher and mathematician who built a working mechanical digital
computer.
Pascal is very data-oriented, giving the programmer the ability to define custom data
types. With this freedom comes strict type-checking, which prevented data types from
being mixed up. Pascal was intended as a teaching language, and was widely adopted as
such. Pascal is free-flowing, unlike FORTRAN, and reads very much like a natural
language, making it very easy to understand code written in it.

UCSD Pascal
One of the things that killed ALGOL was the difficulty of creating a compiler for it. Dr. Wirth
avoided this by having his Pascal compiler compile to an intermediate, platform-
independent object code stage. Another program turned this intermediate code into
executable code.
Prof. Ken Bowles at the University of California at San Diego (UCSD) seized on the
opportunity this offered to adapt the Pascal compiler to the Apple II, the most popular
microcomputer of the day. UCSD P-System became a standard, and was widely used at
universities. This was aided by the low cost of Apple II's compared to mainframes, which
were necessary at the time to run other languages such as FORTRAN. Its impact on
computing can be seen in IBM's advertisements for its revolutionary Personal Computer,
which boasted that the PC supported three operating systems: Digital Research's CP/M-
86, Softech's UCSD P-system, and MicroSoft's PC-DOS.

Pascal Becomes Standard
By the early 1980's, Pascal had already become widely accepted at universities. Two
events conspired to make it even more popular.
First, the Educational Testing Service, the company which writes and administers the
principal college entrance exam in the United States, decided to add a Computer Science
exam to its Advanced Placement exams for high school students. For this exam, it chose
the Pascal language. Because of this, secondary-school students as well as college

4

students began to learn Pascal. Pascal remained the official language of the AP exams
until 1999, when it was replaced by C++, which was quickly replaced by Java.
Second, a small company named Borland International released the Turbo Pascal
compiler for the IBM Personal Computer. The compiler was designed by Anders Hejlsberg,
who would later head the group at Microsoft that developed C# and (re)introduced
Managed Code back to the world of computing.
Turbo Pascal was truly revolutionary. It did take some shortcuts and made some
modifications to standard Pascal, but these were minor and helped it achieve its greatest
advantage: speed. Turbo Pascal compiled at a dizzying rate: several thousand lines a
minute. At the time, the available compilers for the PC platform were slow and bloated.
When Turbo Pascal came out, it was a breath of fresh air. Soon, Turbo Pascal became the
de facto standard for programming on the PC. When PC Magazine published source code
for utility programs, it was usually in either assembly or Turbo Pascal.
At the same time, Apple came out with its Macintosh series of computers. As Pascal was
the preeminent structured programming language of the day, Apple chose Pascal as the
standard programming language for the Mac. When programmers received the API and
example code for Mac programming, it was all in Pascal.

Extensions
From version 1.0 to 7.0 of Turbo Pascal, Borland continued to expand the language. One
of the criticisms of the original version of Pascal was its lack of separate compilation for
modules. Dr. Wirth even created a new programming language, Modula-2, to address that
problem. Borland added modules to Pascal with its units feature.
By version 7.0, many advanced features had been added. One of these was DPMI (DOS
Protected Mode Interface), a way to run DOS programs in protected mode, gaining extra
speed and breaking free of the 640K barrier for accessing memory under DOS. Turbo
Vision, a text-based windowing system, allowed programmers to create great-looking
interfaces in practically no time at all. Pascal even became object-oriented, as version 5.5
adopted the Apple Object Pascal extensions. When Windows 3.0 came out, Borland
created Turbo Pascal for Windows, bringing the speed and ease of Pascal to the graphical
user interface. It seemed that Pascal's future was secure.

The World Changes
However, this was not to be. In the 1970s, Dennis Ritchie and Brian Kernighan of AT&T
Bell Laboratories created the C Programming Language. Ritchie then collaborated with
Ken Thompson to design the UNIX operating system. At the time, AT&T had a
government-sanctioned monopoly on telephone service in the United States. In return for
the monopoly, its telephone business was regulated and it was prohibited from entering
the computer business. AT&T, seeing no market for a research operating system, gave
UNIX away to universities for free, complete with source code.
Thus, a whole generation of computer science students learned C in their university
courses on languages and operating systems. Slowly but surely, C began to filter into the
computer programming world.
Pascal was finally killed by object orientation and the move to Windows on the industry-
standard PC platform. In the 1980s, Bjarne Stroustrop, also of Bell Labs, popularized
object-orientation by developing C++, which kept the familiar syntax of C while extending it
for object orientation. C++ came to define object orientation to a generation of
programmers, and remains a strong force even today.
Also in the 1980s, Microsoft Windows adopted C as its standard programming language.
In contrast to MacOS and Pascal, the Windows API samples were all in K&R (pre-ANSI)

5

C, complete with variable lists after the function prototype. As object orientation and
Windows took hold, the natural language for applications migrating to Windows was C++.
Many colleges and universities moved away from Pascal, choosing C++ or newer
languages for their programming courses. Finally, the AP exam moved to C++, ending
Pascal's dominance in American high schools.

So Why Learn Pascal?
Despite its fading away as a de facto standard, Pascal is still quite useful. C and C++ are
very symbolic languages. Where Pascal chooses words (e.g. begin-end), C/C++ instead
uses symbols ({-}). Also, C was designed for systems programming. In Pascal, mixing
types leads to an error and is very infrequently done. In C/C++, type-casting and pointer
arithmetic is common, making it easy to crash programs and write in buffer overruns.
When the AP exam switched to C++, only a subset of C++ was adopted. Many features,
like arrays, were considered too dangerous for students, and ETS provided its own "safe"
version of these features.
Another reason: speed and size. The Borland Pascal compiler is still lightning-fast. Borland
has revitalized Pascal for Windows with Delphi, a Rapid-Application-Development
environment. Instead of spending several hours writing a user interface for a Windows
program in C/C++, you could do it in ten minutes with Delphi's graphical design tools.
Delphi is to Pascal what Visual BASIC did to BASIC. Borland is still developing Delphi, and
the open-source community has created a largely Borland-compatible compiler called Free
Pascal.
Also, Pascal remains preferred at many universities, especially in areas where students
are first exposed to computers at school rather than at home. In addition, Pascal was well-
suited for teaching programming, and remains so. There is less overhead and fewer ways
for a student to get a program into trouble. For teaching simple procedural programming,
Pascal remains a good choice. Pascal has hung on longer in education outside the United
States, and remains an official language of the International Informatics Olympiad. A basic
programming background is useful in many technical occupations, and the overhead of
learning an object-oriented language is not necessarily the best application of resources.
Thus, even after C, C++, and Java took over the programming world, Pascal retains a
niche in the market. Many small-scale freeware, shareware, and open-source programs
are written in Pascal/Delphi. So enjoy learning it while it lasts. It's a great introduction to
computer programming. It's not scary like C, dangerous like C++, or abstract like Java. In
another twenty years, you'll be one of the few computer programmers to know and
appreciate Pascal.

6

Pascal Compilers

This document will explain the basics about compilers as well as provide links to well-
known Pascal compilers and explain how to set up Free Pascal.

About Computer Languages and Compilers
When talking about computer languages, there are basically three major terms that will be
used.

1. Machine language -- actual binary code that gives basic instructions to the
computer's CPU. These are usually very simple commands like adding two
numbers or moving data from one memory location to another.

2. Assembly language -- a way for humans to program computers directly without
memorizing strings of binary numbers. There is a one-to-one correspondance with
machine code. For example, in Intel x86 machine language, ADD and MOV are
mnemonics for the addition and move operations.

3. High-level language -- permits humans to write complex programs without going
step-by step. High-level languages include Pascal, C, C++, FORTRAN, Java,
BASIC, and many more. One command in a high-level language, like writing a
string to a file, may translate to dozens or even hundreds of machine language
instructions.

Microprocessors can only run machine language programs directly. Assembly language
programs are assembled, or translated into machine language. Likewise, programs written
in high-level languages, like Pascal, must also be translated into machine language before
they can be run. To do this translation is to compile a program.

The program that accomplishes the translation is called a compiler. This program is rather
complex since it not only creates machine language instructions from lines of code, but
often also optimizes the code to run faster, adds error-correction code, and links the code
with subroutines stored elsewhere. For example, when you tell the computer to print
something to the screen, the compiler translates this as a call to a pre-written module.
Your code must then be linked to the code that the compiler manufacturer provides before
an executable program results.

With high-level languages, there are again three basic terms to remember:

1. Source code -- the code that you write. This typically has an extension that
indicates the language used. For example, Pascal source code usually ends in
".pas" and C++ code usually ends in ".cpp"

2. Object code -- the result of compiling. Object code usually includes only one
module of a program, and cannot be run yet since it is incomplete. On
DOS/Windows systems, this usually has an extension of ".obj"

3. Executable code -- the end result. All the object code modules necessary for a
program to function are linked together. On DOS/Windows systems, this usually
has an extension of ".exe"

More About Compilers

7

The de facto standard in DOS and Windows-based compilers is Borland Pascal. Before it
came out, most Pascal compilers were clumsy and slow, strayed from the Pascal
standard, and cost several hundred dollars. In 1984, Borland introduced Turbo Pascal,
which sold for less than $100, compiled an order of magnitude faster than existing
compilers, and came with an abundance of source code and utility programs.

This product was a great success and was prominent for almost a decade. But in the
1990s, the world was moving to Windows. In 1993, the last version of Turbo Pascal,
version 7 for DOS, came out. After that, the demand for DOS programs plummetted and
Borland (renamed Inprise, then back to Borland) focused on producing Windows
compilers.

This tutorial will only deal with console-based programming, where the computer prints
lines of data to the screen and the user interacts with the program using a keyboard. The
goal of the tutorial is to teach how to program in Pascal. Once you've learned that, you can
easily look at a reference book or another web page and pick up graphics and windowing
systems on your own.

Although old commercial Pascal compilers are often available for download, Turbo Pascal
5.5 from the Borland Museum and Symantec Think Pascal (Macintosh) linked from The
Free Country's Free Pascal Compiler List, computers have progressed much since the
1980s and early 1990s. We are no longer stuck with 8.3 filenames on DOS or non-
preemptive multitasking on Mac OS. Using an old compiler is fun in the same sense as
playing an old game on an emulator, but the open source movement has produced good
compilers for modern operating systems, and a beginner will find it much easier to use
those.

Open Source Compilers
The two main open-source compiler projects are:

• GNU Pascal
• Free Pascal

Free Pascal is generally considered friendlier for novices, and strives to emulate Borland
Pascal in many ways, though both will serve fine for learning Pascal.

As most users of this tutorial will be running Windows, here's how to set up Free Pascal
and get to the point where you're compiling a program on a modern Windows operating
system:

1. Download the Win32 installer for Free Pascal from the Free Pascal download page.
2. Run the file you just downloaded and go through the wizard to setup Free Pascal.
3. Open Free Pascal using the shortcut (by default it is located in Start → Free Pascal.
4. Type in a program (flip to the next lesson to get a "Hello, world." program).
5. Save the file with File-Save As ...
6. Run the program from the Run menu. This will automatically compile the program if

you've made any changes, then run the program. It will also run the program
without compiling if you've not made any changes since the last time you compiled.

8

http://www.taoyue.com/tutorials/pascal/pas00.html
http://www.freepascal.org/download.html
http://www.freepascal.org/
http://www.gnu-pascal.de/
http://www.thefreecountry.com/developercity/pascal.html
http://www.thefreecountry.com/developercity/pascal.html
http://community.borland.com/museum/

With programs that don't expect user input, you'll see the program flash on a black screen.
But the program completes in the blink of an eye and you are returned to the IDE without
seeing the results of your work. There are two ways around this:

• Select User screen from the Debug menu to see the results of the program.
• Add a readln statement at the end of every program. This will make the program

wait for the user to press the Enter key before the program ends and returns to the
IDE.

Note that a .exe file was created in the directory where you saved your program. This is
the executable. You can go to the Command Prompt, change to the directory, and run this
executable straight. You can also double-click on it in Windows Explorer (and it will still
flash by quickly if it ends without requiring user input).

9

Hello, world.

In the short history of computer programming, one enduring tradition is that the first
program in a new language is a "Hello, world" to the screen. So let's do that. Copy and
paste the program below into your IDE or text editor, then compile and run it.

If you have no idea how to do this, return to the Table of Contents. Earlier lessons explain
what a compiler is, give links to downloadable compilers, and walk you through the
installation of an open-source Pascal compiler on Windows.

program Hello;
 begin (* Main *)
 writeln ('Hello, world.')
end. (* Main *)

The output on your screen should look like:

Hello, world.

If you're running the program in an IDE, you may see the program run in a flash, then
return to the IDE before you can see what happened. See the bottom of the previous
lesson for the reason why. One suggested solution, adding a readln to wait for you to
press Enter before ending the program, would alter the "Hello, world" program to become:

program Hello;
begin (* Main *)
 writeln ('Hello, world.');
 readln
end. (* Main *)

10

http://www.taoyue.com/tutorials/pascal/compilers.html
http://www.taoyue.com/tutorials/pascal/compilers.html

Basics

The basic structure of a Pascal program is:

PROGRAM ProgramName (FileList);
CONST
 (* Constant declarations *)

TYPE
 (* Type declarations *)

VAR
 (* Variable declarations *)

(* Subprogram definitions *)

BEGIN
 (* Executable statements *)
END.

The elements of a program must be in the correct order, though some may be omitted if
not needed. Here's a program that does nothing, but has all the required elements:

program DoNothing;
begin
end.

Comments are portions of the code which do not compile or execute. Pascal comments
start with a (* and end with a *). You cannot nest comments:
 (* (* *) *)
will yield an error because the compiler matches the first (* with the first *), ignoring the
second (* which is between the first set of comment markers. The second *) is left without
its matching (*. This problem with begin-end comment markers is one reason why many
languages use line-based commenting systems.

Turbo Pascal and most other modern compilers support brace comments, such as
{Comment}. The opening brace signifies the beginning of a block of comments, and the
ending brace signifies the end of a block of comments. Brace comments are also used for
compiler directives.

Commenting makes your code easier to understand. If you write your code without
comments, you may come back to it weeks, months, or years later without a guide to why
you coded the program that way. In particular, you may want to document the major
design of your program and insert comments in your code when you deviate from that
design for a good reason.

In addition, comments are often used to take problematic code out of action without
deleting it. Remember the earlier restriction on nesting comments? It just so happens that
braces {} take precedence over parentheses-stars (* *). You will not get an error if you do
this:

{ (* Comment *) }

11

Whitespace (spaces, tabs, and end-of-lines) are ignored by the Pascal compiler unless
they are inside a literal string. However, to make your program readable by human beings,
you should indent your statements and put separate statements on separate lines.
Indentation is often an expression of individuality by programmers, but collaborative
projects usually select one common style to allow everyone to work from the same page.

Identifiers are names that allow you to reference stored values, such as variables and
constants. Also, every program and unit must be named by an identifier.

Rules for identifiers:

• Must begin with a letter from the English alphabet.
• Can be followed by alphanumeric characters (alphabetic characters and numerals)

and possibly the underscore (_).
• May not contain certain special characters, many of which have special meanings in

Pascal.
~ ! @ # $ % ^ & * () + ` - = { } [] : " ; ' < > ? , . / |

Different implementations of Pascal differ in their rules on special characters. Note that the
underscore character (_) is usually allowed.

Several identifiers are reserved in Pascal as syntactical elements. You are not allowed to
use these for your identifiers. These include but are not limited to:

and array begin case const div do downto else end file for forward function goto if in label
mod nil not of or packed procedure program record repeat set then to type until var while
with

Modern Pascal compilers ship with much functionality in the API (Application Programming
Interfaces). For example, there may be one unit for handling graphics (e.g. drawing lines)
and another for mathematics. Unlike newer languages such as C# and Java, Pascal does
not provide a classification system for identifiers in the form of namespaces. So each unit
that you use may define some identifiers (say DrawLine) which you can no longer use.
Pascal includes a system unit which is automatically used by all programs. This provides
baseline functionality such as rounding to integer and calculating logarithms. The system
unit varies among compilers, so check your documentation. Here is the system unit
documentation for Free Pascal Compiler.

Pascal is not case sensitive! (It was created in the days when all-uppercase computers
were common.) MyProgram, MYPROGRAM, and mYpRoGrAm are equivalent. But for readability
purposes, it is a good idea to use meaningful capitalization. Most programmers will be on
the safe side by never using two capitalizations of the same identifiers for different
purposes, regardless of whether or not the language they're using is case-sensitive. This
reduces confusion and increases productivity.

Identifiers can be any length, but some Pascal compilers will only look at the first several
characters. One usually does not push the rules with extremely long identifiers or loads of
special characters, since it makes the program harder to type for the programmer. Also,
since most programmers work with many different languages, each with different rules
about special characters and case-sensitivity, it is usually best to stick with alphanumeric
characters and the underscore character.

12

http://www.freepascal.org/docs-html/rtl/system/index.html
http://www.freepascal.org/docs-html/rtl/system/index.html

Constants are referenced by identifiers, and can be assigned one value at the beginning of
the program. The value stored in a constant cannot be changed.

Constants are defined in the constant section of the program:

const
 Identifier1 = value;
 Identifier2 = value;
 Identifier3 = value;

For example, let's define some constants of various data types: strings, characters,
integers, reals, and Booleans. These data types will be further explained in the next
section.

const
 Name = 'Tao Yue';
 FirstLetter = 'a';
 Year = 1997;
 pi = 3.1415926535897932;
 UsingNCSAMosaic = TRUE;

Note that in Pascal, characters are enclosed in single quotes, or apostrophes (')! This
contrasts with newer languages which often use or allow double quotes or Heredoc
notation. Standard Pascal does not use or allow double quotes to mark characters or
strings.

Constants are useful for defining a value which is used throughout your program but may
change in the future. Instead of changing every instance of the value, you can change just
the constant definition.

Typed constants force a constant to be of a particular data type. For example,

const
 a : real = 12;

would yield an identifier a which contains a real value 12.0 instead of the integer value 12.

Variables are similar to constants, but their values can be changed as the program runs.
Variables must first be declared in Pascal before they can be used:

var
 IdentifierList1 : DataType1;
 IdentifierList2 : DataType2;
 IdentifierList3 : DataType3;
 ...

IdentifierList is a series of identifiers, separated by commas (,). All identifiers in the list
are declared as being of the same data type.

The basic data types in Pascal include:

• integer
• real
• char

13

• Boolean

Standard Pascal does not make provision for the string data type, but most modern
compilers do. Experienced Pascal programmers also use pointers for dynamic memory
allocation, objects for object-oriented programming, and many others, but this gets you
started.

More information on Pascal data types:

• The integer data type can contain integers from -32768 to 32767. This is the
signed range that can be stored in a 16-bit word, and is a legacy of the era when
16-bit CPUs were common. For backward compatibility purposes, a 32-bit signed
integer is a longint and can hold a much greater range of values.

• The real data type has a range from 3.4x10-38 to 3.4x1038, in addition to the same
range on the negative side. Real values are stored inside the computer similarly to
scientific notation, with a mantissa and exponent, with some complications. In
Pascal, you can express real values in your code in either fixed-point notation or in
scientific notation, with the character E separating the mantissa from the exponent.
Thus,
 452.13 is the same as 4.5213e2

• The char data type holds characters. Be sure to enclose them in single quotes, like
so: 'a' 'B' '+' Standard Pascal uses 8-bit characters, not 16-bits, so Unicode,
which is used to represent all the world's language sets in one UNIfied CODE
system, is not supported.

• The Boolean data type can have only two values:
TRUE and FALSE

An example of declaring several variables is:

var
 age, year, grade : integer;
 circumference : real;
 LetterGrade : char;
 DidYouFail : Boolean;

Once you have declared a variable, you can store values in it. This is called assignment.

To assign a value to a variable, follow this syntax:

variable_name := expression;

Note that unlike other languages, whose assignment operator is just an equals sign,
Pascal uses a colon followed by an equals sign, similarly to how it's done in most
computer algebra systems.

The expression can either be a single value:

some_real := 385.385837;

or it can be an arithmetic sequence:

some_real := 37573.5 * 37593 + 385.8 / 367.1;

14

The arithmetic operators in Pascal are:

Operator Operation Operands Result
+ Addition or unary positive real or integer real or integer

- Subtraction or unary
negative real or integer real or integer

* Multiplication real or integer real or integer
/ Real division real or integer real

div Integer division integer integer

mod Modulus (remainder
division) integer integer

div and mod only work on integers. / works on both reals and integers but will always yield
a real answer. The other operations work on both reals and integers. When mixing
integers and reals, the result will always be a real since data loss would result otherwise.
This is why Pascal uses two different operations for division and integer division. 7 / 2 =
3.5 (real), but 7 div 2 = 3 (and 7 mod 2 = 1 since that's the remainder).

Each variable can only be assigned a value that is of the same data type. Thus, you
cannot assign a real value to an integer variable. However, certain data types will convert
to a higher data type. This is most often done when assigning integer values to real
variables. Suppose you had this variable declaration section:

var
 some_int : integer;
 some_real : real;

When the following block of statements executes,

some_int := 375;
some_real := some_int;

some_real will have a value of 375.0.

Changing one data type to another is referred to as typecasting. Modern Pascal compilers
support explicit typecasting in the manner of C, with a slightly different syntax. However,
typecasting is usually used in low-level situations and in connection with object-oriented
programming, and a beginning programming student will not need to use it. Here is
information on typecasting from the GNU Pascal manual.

In Pascal, the minus sign can be used to make a value negative. The plus sign can also be
used to make a value positive, but is typically left out since values default to positive.

Do not attempt to use two operators side by side, like in:

some_real := 37.5 * -2;

This may make perfect sense to you, since you're trying to multiply by negative-2.
However, Pascal will be confused — it won't know whether to multiply or subtract. You can
avoid this by using parentheses to clarify:

15

http://www.gnu-pascal.de/gpc-es/Type-Casts.html

some_real := 37.5 * (-2);

The computer follows an order of operations similar to the one that you follow when you do
arithmetic. Multiplication and division (* / div mod) come before addition and subtraction
(+ -), and parentheses always take precedence. So, for example, the value of: 3.5*(2+3)
will be 17.5.

Pascal cannot perform standard arithmetic operations on Booleans. There is a special set
of Boolean operations. Also, you should not perform arithmetic operations on characters.

Pascal has several standard mathematical functions that you can utilize. For example, to
find the value of sin of pi radians:

value := sin (3.1415926535897932);

Note that the sin function operates on angular measure stated in radians, as do all the
trigonometric functions. If everything goes well, value should become 0.

Functions are called by using the function name followed by the argument(s) in
parentheses. Standard Pascal functions include:

Function Description Argument
type Return type

abs absolute value real or integer same as
argument

arctan arctan in radians real or integer real

cos cosine of a radian measure real or integer real

exp e to the given power real or integer real

ln natural logarithm real or integer real

round round to nearest integer real integer

sin sin of a radian measure real or integer real

sqr square (power 2) real or integer same as
argument

sqrt square root (power 1/2) real or integer real

trunc truncate (round down) real or integer integer

For ordinal data types (integer or char), where the allowable values have a distinct
predecessor and successor, you can use these functions:

Function Description Argument
type Return type

chr character with given ASCII integer char

16

value

ord ordinal value integer or
char integer

pred predecessor integer or
char

same as
argument type

succ successor integer or
char

same as
argument type

Real is not an ordinal data type! That's because it has no distinct successor or
predecessor. What is the successor of 56.0? Is it 56.1, 56.01, 56.001, 56.0001?

However, for an integer 56, there is a distinct predecessor — 55 — and a distinct
successor — 57.

The same is true of characters:

'b'
Successor: 'c'
Predecessor: 'a'

The above is not an exhaustive list, as modern Pascal compilers include thousands of
functions for all sorts of purposes. Check your compiler documentation for more.

Since Pascal ignores end-of-lines and spaces, punctuation is needed to tell the compiler
when a statement ends.

You must have a semicolon following:

• the program heading
• each constant definition
• each variable declaration
• each type definition (to be discussed later)
• almost all statements

The last statement in a BEGIN-END block, the one immediately preceding the END, does not
require a semicolon. However, it's harmless to add one, and it saves you from having to
add a semicolon if suddenly you had to move the statement higher up.

Indenting is not required. However, it is of great use for the programmer, since it helps to
make the program clearer. If you wanted to, you could have a program look like this:

program Stupid; const a=5; b=385.3; var alpha,beta:real; begin alpha := a + b;
beta:= b / a end.

But it's much better for it to look like this:

program NotAsStupid;

const

17

 a = 5;
 b = 385.3;

var
 alpha,
 beta : real;

begin (* main *)
 alpha := a + b;
 beta := b / a
end. (* main *)

In general, indent each block. Skip a line between blocks (such as between the const and
var blocks). Modern programming environments (IDE, or Integrated Development
Environment) understand Pascal syntax and will oten indent for you as you type. You can
customize the indentation to your liking (display a tab as three spaces or four?).

Proper indentation makes it much easier to determine how code works, but is vastly aided
by judicious commenting.

Now you know how to use variables and change their value. Ready for your first
programming assignment?

But there's one small problem: you haven't yet learned how to display data to the screen!
How are you going to know whether or not the program works if all that information is still
stored in memory and not displayed on the screen?

So, to get you started, here's a snippet from the next few lessons. To display data, use:

writeln (argument_list);

The argument list is composed of either strings or variable names separated by commas.
An example is:

writeln ('Sum = ', sum);

Here's the programming assignment for Chapter 1:

Find the sum and average of five integers. The sum should be an integer, and the average
should be real. The five numbers are: 45, 7, 68, 2, and 34.

Use a constant to signify the number of integers handled by the program, i.e. define a
constant as having the value 5.

Then print it all out! The output should look something like this:

Number of integers = 5
Number1 = 45
Number2 = 7
Number3 = 68
Number4 = 2
Number5 = 34
Sum = 156
Average = 3.1200000000E+01

18

As you can see, the default output method for real numbers is scientific notation. Chapter
2 will explain you how to format it to fixed-point decimal.

To see one possible solution of the assignment, go to the next page.

Here's one way to solve the programming assignment in the previous section.

(* Author: Tao Yue
 Date: 19 June 1997
 Description:
 Find the sum and average of five predefined numbers
 Version:
 1.0 - original version
*)

program SumAverage;

const
 NumberOfIntegers = 5;

var
 A, B, C, D, E : integer;
 Sum : integer;
 Average : real;

begin (* Main *)
 A := 45;
 B := 7;
 C := 68;
 D := 2;
 E := 34;
 Sum := A + B + C + D + E;
 Average := Sum / NumberOfIntegers;
 writeln ('Number of integers = ', NumberOfIntegers);
 writeln ('Number1 = ', A);
 writeln ('Number2 = ', B);
 writeln ('Number3 = ', C);
 writeln ('Number4 = ', D);
 writeln ('Number5 = ', E);
 writeln ('Sum = ', Sum);
 writeln ('Average = ', Average)
end. (* Main *)

19

Input/Output

Input is what comes into the program. It can be from the keyboard, the mouse, a file on
disk, a scanner, a joystick, etc.

We will not get into mouse input in detail, because that syntax differs from machine to
machine. In addition, today's event-driven windowing operating systems usually handle
mouse input for you.

The basic format for reading in data is:

read (Variable_List);

Variable_List is a series of variable identifiers separated by commas.

read treats input as a stream of characters, with lines separated by a special end-of-line
character. readln, on the other hand, will skip to the next line after reading a value, by
automatically moving past the next end-of-line character:

readln (Variable_List);

Suppose you had this input from the user, and a, b, c, and d were all integers.

45 97 3
1 2 3

Here are some sample read and readln statements, along with the values read into the
appropriate variables.

Statement(s) a b c d

read (a);
read (b); 45 97

readln (a);
read (b); 45 1

read (a, b, c, d); 45 97 3 1

readln (a, b);
readln (c, d); 45 97 1 2

When reading in integers, all spaces are skipped until a numeral is found. Then all
subsequent numberals are read, until a non-numeric character is reached (including, but
not limited to, a space).

8352.38

When an integer is read from the above input, its value becomes 8352. If, immediately
afterwards, you read in a character, the value would be '.' since the read head stopped at
the first alphanumeric character.

20

Suppose you tried to read in two integers. That would not work, because when the
computer looks for data to fill the second variable, it sees the '.' and stops since it
couldn't find any data to read.

With real values, the computer also skips spaces and then reads as much as can be read.
However, many Pascal compilers place one additional restriction: a real that has no whole
part must begin with 0. So .678 is invalid, and the computer can't read in a real, but 0.678
is fine.

Make sure that all identifiers in the argument list refer to variables! Constants cannot be
assigned a value, and neither can literal values.

For writing data to the screen, there are also two statements, one of which you've seen
already in last chapter's programming assignment:

write (Argument_List);
writeln (Argument_List);

The writeln statement skips to the next line when done.

You can use strings in the argument list, either constants or literal values. If you want to
display an apostrophe within a string, use two consecutive apostrophes. Displaying two
consecutive apostrophes would then requires you to use four. This use of a special
sequence to refer to a special character is called escaping, and allows you to refer to any
character even if there is no key for it on the keyboard.

Formatting output is quite easy. For each identifier or literal value on the argument list,
use:

Value : field_width

The output is right-justified in a field of the specified integer width. If the width is not long
enough for the data, the width specification will be ignored and the data will be displayed in
its entirety (except for real values — see below).

Suppose we had:

write ('Hi':10, 5:4, 5673:2);

The output would be (that's eight spaces before the Hi and three spaces after):

Hi 55673

For real values, you can use the aforementioned syntax to display scientific notation in a
specified field width, or you can convert to fixed decimal-point notation with:

Value : field_width : decimal_field_width

The field width is the total field width, including the decimal part. The whole number part is
always displayed fully, so if you have not allocated enough space, it will be displayed
anyway. However, if the number of decimal digits exceeds the specified decimal field

21

width, the output will be displayed rounded to the specified number of places (though the
variable itself is not changed).

write (573549.56792:20:2);

would look like (with 11 spaces in front):

 573549.57

Reading from a file instead of the console (keyboard) can be done by:

read (file_variable, argument_list);
write (file_variable, argument_list);

Similarly with readln and writeln. file_variable is declared as follows:

var
 ...
 filein, fileout : text;

The text data type indicates that the file is just plain text.

After declaring a variable for the file, and before reading from or writing to it, we need to
associate the variable with the filename on the disk and open the file. This can be done in
one of two ways. Typically:

reset (file_variable, 'filename.extension');
 rewrite (file_variable, 'filename.extension');

reset opens a file for reading, and rewrite opens a file for writing. A file opened with reset
can only be used with read and readln. A file opened with rewrite can only be used with
write and writeln.

Turbo Pascal introduced the assign notation. First you assign a filename to a variable,
then you call reset or rewrite using only the variable.

assign (file_variable, 'filename.extension');
reset (file_variable)

The method of representing the path differs depending on your operating system.
Windows uses backslashes and drive letters due to its DOS heritage (e.g.
c:\directory\name.pas), while MacOS X and Linux use forward slashes due to their UNIX
heritage.

After you're done with the file, you can close it with:

close (File_Identifier);

Here's an example of a program that uses files. This program was written for Turbo Pascal
and DOS, and will create file2.txt with the first character from file1.txt:

program CopyOneByteFile;

var

22

 mychar : char;
 filein, fileout : text;

begin
 assign (filein, 'c:\file1.txt');
 reset (filein);
 assign (fileout, 'c:\file2.txt');
 rewrite (fileout);
 read (filein, mychar);
 write (fileout, mychar);
 close(filein);
 close(fileout)
end.

EOLN is a Boolean function that is TRUE when you have reached the end of a line in an open
input file.

eoln (file_variable)

If you want to test to see if the standard input (the keyboard) is at an end-of-line, simply
issue eoln without any parameters. This is similar to the way in which read and write use
the console (keyboard and screen) if called without a file parameter.

eoln

EOF is a Boolean function that is TRUE when you have reached the end of the file.

eof (file_variable)

Usually, you don't type the end-of-file character from the keyboard. On DOS/Windows
machines, the character is Control-Z. On UNIX/Linux machines, the character is Control-D.

Again find the sum and average of five numbers, but this time read in five integers and
display the output in neat columns.

Refer to the original problem specification if needed. You should type in the numbers
separated by spaces from the keyboard: 45 7 68 2 34.

The output should now look like this:

Number of integers = 5

Number1: 45
Number2: 7
Number3: 68
Number4: 2
Number5: 34
================
Sum: 156
Average: 31.2

As an added exercise, you can try to write the output to a file. However, I won't use files in
the problem solution.

(* Author: Tao Yue
 Date: 19 June 1997

23

 Description:
 Find the sum and average of five predefined numbers
 Version:
 1.0 - original version
 2.0 - read in data from keyboard
*)

program SumAverage;

const
 NumberOfIntegers = 5;

var
 A, B, C, D, E : integer;
 Sum : integer;
 Average : real;

begin (* Main *)
 write ('Enter the first number: ');
 readln (A);
 write ('Enter the second number: ');
 readln (B);
 write ('Enter the third number: ');
 readln (C);
 write ('Enter the fourth number: ');
 readln (D);
 write ('Enter the fifth number: ');
 readln (E);
 Sum := A + B + C + D + E;
 Average := Sum / 5;
 writeln ('Number of integers = ', NumberOfIntegers);
 writeln;
 writeln ('Number1:', A:8);
 writeln ('Number2:', B:8);
 writeln ('Number3:', C:8);
 writeln ('Number4:', D:8);
 writeln ('Number5:', D:8);
 writeln ('================');
 writeln ('Sum:', Sum:12);
 writeln ('Average:', Average:10:1);
end.

24

Program Flow

Sequential control is simple. The computer executes each statement and goes on to the
next statement until it sees an end.

Boolean expressions are used to compare two values and get a true-or-false answer:

value1 relational_operator value2

The following relational operators are used:

< less than

> greater than

= equal to

<= less than or equal to

>= greater than or equal to

<> not equal to

You can assign Boolean expressions to Boolean variables. Here we assign a true
expression to some_bool:

some_bool := 3 < 5;

Complex Boolean expressions are formed by using the Boolean operators:

not negation (~)

and conjunction (^)

or disjunction (v)

xor exclusive-or

NOT is a unary operator — it is applied to only one value and inverts it:

• not true = false
• not false = true

AND yields TRUE only if both values are TRUE:

• TRUE and FALSE = FALSE
• TRUE and TRUE = TRUE

OR yields TRUE if at least one value is TRUE:

25

• TRUE or TRUE = TRUE
• TRUE or FALSE = TRUE
• FALSE or TRUE = TRUE
• FALSE or FALSE = FALSE

XOR yields TRUE if one expression is TRUE and the other is FALSE. Thus:

• TRUE xor TRUE = FALSE
• TRUE xor FALSE = TRUE
• FALSE xor TRUE = TRUE
• FALSE xor FALSE = FALSE

When combining two Boolean expressions using relational and Boolean operators, be
careful to use parentheses.

(3>5) or (650<1)

This is because the Boolean operators are higher on the order of operations than the
relational operators:

1. not
2. * / div mod and
3. + - or
4. < > <= >= = <>

So 3 > 5 or 650 < 1 becomes evaluated as 3 > (5 or 650) < 1, which makes no
sense, because the Boolean operator or only works on Boolean values, not on integers.

The Boolean operators (AND, OR, NOT, XOR) can be used on Boolean variables just as
easily as they are used on Boolean expressions.

Whenever possible, don't compare two real values with the equals sign. Small round-off
errors may cause two equivalent expressions to differ.

The IF statement allows you to branch based on the result of a Boolean operation. The
one-way branch format is:

if BooleanExpression then
 StatementIfTrue;

If the Boolean expression evaluates to true, the statement executes. Otherwise, it is
skipped.

The IF statement accepts only one statement. If you would like to branch to a compound
statement, you must use a begin-end to enclose the statements:

if BooleanExpression then
begin
 Statement1;
 Statement2
end;

26

There is also a two-way selection:

if BooleanExpression then
 StatementIfTrue
else
 StatementIfFalse;

If the Boolean expression evaluates to FALSE, the statement following the else will be
performed. Note that you may not use a semicolon after the statement preceding the else.
That causes the computer to treat it as a one-way selection, leaving it to wonder where the
else came from.

If you need multi-way selection, simply nest if statements:

if Condition1 then
 Statement1
else
 if Condition2 then
 Statement2
 else
 Statement3;

Be careful with nesting. Sometimes the computer won't do what you want it to do:

if Condition1 then
 if Condition2 then
 Statement2
else
 Statement1;

The else is always matched with the most recent if, so the computer interprets the
preceding block of code as:

if Condition1 then
 if Condition2 then
 Statement2
 else
 Statement1;

You can get by with a null statement:

if Condition1 then
 if Condition2 then
 Statement2
 else
else
 Statement1;

or you could use a begin-end block. But the best way to clean up the code would be to
rewrite the condition.

if not Condition1 then
 Statement1
else
 if Condition2 then
 Statement2;

27

This example illustrates where the not operator comes in very handy. If Condition1 had
been a Boolean like: (not(a < b) or (c + 3 > 6)) and g, reversing the expression
would be more difficult than NOTting it.

Also notice how important indentation is to convey the logic of program code to a human,
but the compiler ignores the indentation.

Suppose you wanted to branch one way if b is 1, 7, 2037, or 5; and another way if
otherwise. You could do it by:

if (b = 1) or (b = 7) or (b = 2037) or (b = 5) then
 Statement1
else
 Statement2;

But in this case, it would be simpler to list the numbers for which you want Statement1 to
execute. You would do this with a case statement:

case b of
 1,7,2037,5: Statement1;
 otherwise Statement2
end;

The general form of the case statement is:

 case selector of
 List1: Statement1;
 List2: Statement2;
 ...
 Listn: Statementn;
 otherwise Statement
 end;

The otherwise part is optional. When available, it differs from compiler to compiler. In
many compilers, you use the word else instead of otherwise.

selector is any variable of an ordinal data type. You may not use reals!

Note that the lists must consist of literal values. That is, you must use constants or hard-
coded values -- you cannot use variables.

Looping means repeating a statement or compound statement over and over until some
condition is met.

There are three types of loops:

• fixed repetition - only repeats a fixed number of times
• pretest - tests a Boolean expression, then goes into the loop if TRUE
• posttest - executes the loop, then tests the Boolean expression

In Pascal, the fixed repetition loop is the for loop. The general form is:

 for index := StartingLow to EndingHigh do
 statement;

28

The index variable must be of an ordinal data type. You can use the index in calculations
within the body of the loop, but you should not change the value of the index. An example
of using the index is:

sum := 0;
for count := 1 to 100 do
 sum := sum + count;

The computer would do the sum the long way and still finish it in far less time than it took
the mathematician Gauss to do the sum the short way (1+100 = 101. 2+99 = 101. See a
pattern? There are 100 numbers, so the pattern repeats 50 times. 101*50 = 5050. This
isn't advanced mathematics, its attribution to Gauss is probably apocryphal.).

In the for-to-do loop, the starting value MUST be lower than the ending value, or the loop
will never execute! If you want to count down, you should use the for-downto-do loop:

 for index := StartingHigh downto EndingLow do
 statement;

In Pascal, the for loop can only count in increments (steps) of 1.

The pretest loop has the following format:

 while BooleanExpression do
 statement;

The loop continues to execute until the Boolean expression becomes FALSE. In the body of
the loop, you must somehow affect the Boolean expression by changing one of the
variables used in it. Otherwise, an infinite loop will result:

a := 5;
while a < 6 do
 writeln (a);

Remedy this situation by changing the variable's value:

a := 5;
while a < 6 do
 begin
 writeln (a);
 a := a + 1
 end;

The WHILE ... DO lop is called a pretest loop because the condition is tested before the
body of the loop executes. So if the condition starts out as FALSE, the body of the while
loop never executes.

The posttest loop has the following format:

 repeat
 statement1;
 statement2
 until BooleanExpression;

29

In a repeat loop, compound statements are built-in -- you don't need to use begin-end.
Also, the loop continues until the Boolean expression is TRUE, whereas the while loop
continues until the Boolean expression is FALSE.

This loop is called a posttest loop because the condition is tested after the body of the loop
executes. The REPEAT loop is useful when you want the loop to execute at least once, no
matter what the starting value of the Boolean expression is.

Problem 1

Find the first 10 numbers in the Fibonacci sequence. The Fibonacci sequence starts with
two numbers:

1 1

Each subsequent number is formed by adding the two numbers before it. 1+1=2, 1+2=3,
2+3=5, etc. This forms the following sequence:

1 1 2 3 5 8 13 21 34 55 89 144 ...

Problem 2

Display all powers of 2 that are less than 20000. Display the list in a properly formatted
manner, with commas between the numbers. Display five numbers per line. The output
should look like:

 1, 2, 4, 8, 16,
32, 64, 128, 256, 512,
1024, 2048, 4096, 8192, 16384

Solution to Fibonacci Sequence Problem
(* Author: Tao Yue
 Date: 19 July 1997
 Description:
 Find the first 10 Fibonacci numbers
 Version:
 1.0 - original version
*)

program Fibonacci;

var
 Fibonacci1, Fibonacci2 : integer;
 temp : integer;
 count : integer;

begin (* Main *)
 writeln ('First ten Fibonacci numbers are:');
 count := 0;
 Fibonacci1 := 0;
 Fibonacci2 := 1;
 repeat
 write (Fibonacci2:7);
 temp := Fibonacci2;
 Fibonacci2 := Fibonacci1 + Fibonacci2;
 Fibonacci1 := Temp;
 count := count + 1

30

 until count = 10;
 writeln;

 (* Of course, you could use a FOR loop or a WHILE loop
 to solve this problem. *)

end. (* Main *)

Solution to Powers of Two Problem
(* Author: Tao Yue
 Date: 13 July 2000
 Description:
 Display all powers of two up to 20000, five per line
 Version:
 1.0 - original version
*)

program PowersofTwo;

const
 numperline = 5;
 maxnum = 20000;
 base = 2;

var
 number : longint;
 linecount : integer;

begin (* Main *)
 writeln ('Powers of ', base, ', 1 <= x <= ', maxnum, ':');
 (* Set up for loop *)
 number := 1;
 linecount := 0;
 (* Loop *)
 while number <= maxnum do
 begin
 linecount := linecount + 1;
 (* Print a comma and space unless this is the first
 number on the line *)
 if linecount > 1 then
 write (', ');
 (* Display the number *)
 write (number);
 (* Print a comma and go to the next line if this is
 the last number on the line UNLESS it is the
 last number of the series *)
 if (linecount = numperline) and not (number * 2 > maxnum) then
 begin
 writeln (',');
 linecount := 0
 end;
 (* Increment number *)
 number := number * base;
 end; (* while *)
 writeln;

 (* This program can also be written using a
 REPEAT..UNTIL loop. *)

end. (* Main *)

31

Note that I used three constants: the base, the number of powers to display on each line,
and the maximum number. This ensures that the program can be easily adaptable in the
future.

Using constants rather than literals is a good programming habit to form. When you write
really long programs, you may refer to certain numbers thousands of times. If you
hardcoded them into your code, you'd have to search them out. Also, you might use the
same value in a different context, so you can't simply do a global Search-and-Replace.
Using a constant makes it simpler to expand the program.

Also note that I used the longint type for the number variable. This is because to fail the
test number <= 20000, number would have to reach 32768, the next power of two after
16384. This exceeds the range of the integer type: -32768 to 32767. (try it without longint
and see what happens)

32

Subprograms

A procedure is a subprogram. Subprograms help reduce the amount of redundancy in a
program. Statements that are executed over and over again but not contained in a loop
are often put into subprograms.

Subprograms also facilitate top-down design. Top-down design is the tackling of a
program from the most general to the most specific. For example, top down design for
going from one room to another starts out as:

• Get out of first room
• Go to second room
• Go into second room

Then it is refined to

• Get out of first room
o Go to door
o Open the door
o Get out of door
o Close door

• ...

Just going to the door can be refined further:

• Get out of first room
o Go to door

 Get out of seat
 Turn towards door
 Walk until you almost bump into it

This, of course, can be further refined to say how much exercise should be given to your
cardiac myofibrils, and how much adenosine diphosphate should be converted to
adenosine triphosphate by fermentation or aerobic respiration. This may seem to be too
detailed, but for computer programming, this is, in effect what you have to do. The
computer can't understand general statements -- you must be specific.

Main tasks should be contained in procedures, so in the main program, you don't have to
worry about the details. This also makes for reusable code. You can just keep your
procedures in one file and link that into your program.

A procedure has the same basic format as a program:

procedure Name;
const
 (* Constants *)

var
 (* Variables *)

33

begin
 (* Statements *)
end;

There is a semicolon (not a period) at the end.

To call the procedure from the main program, just use the name, like you would writeln.

 Name;

Procedures are very often used to output data. It's that simple (until the next lesson, of
course).

A parameter list can be included as part of the procedure heading. The parameter list
allows variable values to be transferred from the main program to the procedure. The new
procedure heading is:

procedure Name (formal_parameter_list);

The parameter list consists of several parameter groups, separated by semicolons:

param_group_1; param_group2; ... ; param_groupn

Each parameter group has the form:

identifier_1, identifier_2, ... , identifier_n : data_type

The procedure is called by passing arguments (called the actual parameter list) of the
same number and type as the formal parameter list.

procedure Name (a, b : integer; c, d : real);
begin
 a := 10;
 b := 2;
 writeln (a, b, c, d)
end;

Suppose you called the above procedure from the main program as follows:

alpha := 30;
Name (alpha, 3, 4, 5);

When you return to the main program, what is the value of alpha? 30. Yet, alpha was
passed to a, which was assigned a value of 10. What actually happened was that a and
alpha are totally distinct. The value in the main program was not affected by what
happened in the procedure.

This is called call-by-value. This passes the value of a variable to a procedure.

Another way of passing parameters is call-by-reference. This creates a link between the
formal parameter and the actual parameter. When the formal parameter is modified in the
procedure, the actual parameter is likewise modified. Call-by-reference is activated by
preceding the parameter group with a VAR:

34

VAR identifier1, identifier2, ..., identifiern : datatype;

In this case, constants and literals are not allowed to be used as actual parameters
because they might be changed in the procedure.

Here's an example which mixes call-by-value and call-by-reference:

procedure Name (a, b : integer; VAR c, d : integer);
begin
 c := 3;
 a := 5
end;

begin
 alpha := 1;
 gamma := 50;
 delta := 30;
 Name (alpha, 2, gamma, delta);
end.

Immediately after the procedure has been run, gamma has the value 3 because c was a
reference parameter, but alpha still is 1 because a was a value parameter.

This is a bit confusing. Think of call-by-value as copying a variable, then giving the copy to
the procedure. The procedure works on the copy and discards it when it is done. The
original variable is unchanged.

Call-by-reference is giving the actual variable to the procedure. The procedure works
directly on the variable and returns it to the main program.

In other words, call-by-value is one-way data transfer: main program to procedure. Call-by-
reference goes both ways.

Functions work the same way as procedures, but they always return a single value to the
main program through its own name:

function Name (parameter_list) : return_type;

Functions are called in the main program by using them in expressions:

a := Name (5) + 3;

Be careful not to use the name of the function on the right side of any equation inside the
function. That is:

function Name : integer;
begin
 Name := 2;
 Name := Name + 1
end.

is a no-no. Instead of returning the value 3, as might be expected, this sets up an infinite
recursive loop. Name will call Name, which will call Name, which will call Name, etc.

The return value is set by assigning a value to the function identifier.

35

Name := 5;

It is generally bad programming form to make use of VAR parameters in functions --
functions should return only one value. You certainly don't want the sin function to change
your pi radians to 0 radians because they're equivalent -- you just want the answer 0.

Scope refers to where certain variables are visible. You have procedures inside
procedures, variables inside procedures, and your job is to try to figure out when each
variable can be seen by the procedure.

A global variable is a variable defined in the main program. Any subprogram can see it,
use it, and modify it. All subprograms can call themselves, and can call all other
subprograms defined before it.

The main point here is: within any block of code (procedure, function, whatever), the only
identifiers that are visible are those defined before that block and either in or outside of
that block.

program Stupid;
var A;

 procedure StupidToo;
 var A;
 begin
 A := 10;
 writeln (A)
 end;

begin (* Main *)
 A := 20;
 writeln (A);
 StupidToo;
 writerln (A);
end. (* Main *)

The output of the above program is:

20
10
20

The reason is: if two variable with the same identifiers are declared in a subprogram and
the main program, the main program sees its own, and the subprogram sees its own (not
the main's). The most local definition is used when one identifier is defined twice in
different places.

Here's a scope chart which basically amounts to an indented copy of the program with just
the variables and minus the logic:

36

• Everybody can see global variables A, B, and C.
• However, in procedure Alpha the global definition of A is replaced by the local

definition.
• Beta1 and Beta2 can see variables VCR, Betamax, and cassette.
• Beta1 cannot see variable FailureToo, and Beta2 cannot see Failure.
• No subprogram except Alpha can access F and G.
• Procedure Beta can call Alpha and Beta.
• Function Beta2 can call any subprogram, including itself (the main program is not a

subprogram).

Recursion is a difficult topic to grasp. However, it's very easy to apply once you
understand it. The programming assignment for this chapter will involve recursion.

Recursion means allowing a function or procedure to call itself. It keeps calling itself until
some limit is reached.

The summation function, designated by an uppercase Sigma in mathematics, is a popular
example of recursion:

function Summation (num : integer) : integer;
begin
 if num = 1 then
 Summation := 1
 else
 Summation := Summation(num-1) + num
end;

Suppose you call Summation for 3.

a := Summation(3);

• Summation(3) becomes Summation(2) + 3.
• Summation(2) becomes Summation(1) + 2.
• At 1, the recursion stops and becomes 1.
• Summation(2) becomes 1 + 2 = 3.

37

• Summation(3) becomes 3 + 3 = 6.
• a becomes 6.

Recursion works backward until a given point is reached at which an answer is defined,
and then works forward with that definition, solving the other definitions which rely upon
that one.

All recursive procedures/functions should have some sort of test so stop the recursion.
Under one condition, called the base condition, the recursion should stop. Under all other
conditions, the recursion should go deeper. In the example above, the base condition was
if num = 1. If you don't build in a base condition, the recursion will either not take place at
all, or become infinite.

After all these confusing topics, here's something easy.

Remember that procedures/functions can only see variables and other subprograms that
have already been defined? Well, there is an exception.

If you have two subprograms, each of which calls the other, you have a dilemma that no
matter which you put first, the other still can't be called from the first.

To resolve this chicken-and-the-egg problem, use forward referencing.

procedure Later (parameter list); forward;

procedure Sooner (parameter list);
begin
 ...
 Later (parameter list);
end;
...
procedure Later;
begin
 ...
 Sooner (parameter list);
end;

The same goes for functions. Just stick a forward; at the end of the heading.

A classic recursion problem, taught in all introductory Computer Science courses, is the
Towers of Hanoi. In this problem, you have three vertical pegs. There is a cone-shaped
tower on the leftmost peg, consisting of a series of donut-shaped discs. For example, this
is what a four-story tower looks like:

 | | |
 | | |
 * | |
 *** | |
 ***** | |
 ******* | |

The pegs are designated 1, 2, and 3 from left to right. The challenge is to move a tower
(any height) from peg 1 to peg 3. In the process, no large disc may be placed on top of a

38

smaller disc, and only one disc (the topmost disc on a peg) may be moved at any one
time.

The problem seems trivial, and it is for one or two discs. For one disc, you simply move it
from peg 1 to peg 3. For two discs, move the topmost disc from peg 1 to peg 2, then 1 to
3, and finally move the smaller disc from 2 to 3.

The problem gets harder for three or more discs. For three discs, you'd move 1 to 3, then
1 to 2, then 3 to 2. This effectively creates a two-story tower on peg 2. Then move the
largest disc: 1 to 3. Now move the two-story tower on top of the large disc: 2 to 1, 2 to 3, 1
to 3.

Your mission, should you choose to accept it -- write a program using a recursive
procedure to solve the Towers of Hanoi for any number of discs. First ask the user for the
height of the original tower. Then, print out step-by-step instructions for moving individual
discs from one peg to another. For example, a three-disc problem should produce the
following output:

 1 to 3
 1 to 2
 3 to 2
 1 to 3
 2 to 1
 2 to 3
 1 to 3

As stated in the section on recursion (lesson 4E), recursion is one of the more difficult
topics to grasp. Some people will look at this problem and find it extremely easy. Others
will have a difficult time with it. However, once you get past the hurdle of understanding
recursion, the actual coding of the program is relatively simple.

So, if you'd like to challenge yourself, stop reading right here. If you have a little trouble,
keep reading for a small hint.

Hint: the problem, like all recursive problems, reduces itself, becoming simpler with each
step. Remember the three-disc problem? You first create a two-disc tower on peg 2, which
allows you to move the bottommost disc on peg 1 to peg 3. Then you move the two-disc
tower on top of peg 3.

It's the same with four discs. First create a three-disc tower on peg 2, then move the
biggest disc over to peg 3 and move the three-disc tower to peg 3. How do you create the
three-disc tower? Simple. We already know how to move a three-disc tower from peg 1 to
peg 3. This time, you're just moving from peg 1 to peg 2, then when the biggest peg is in
place, you're moving the tower from peg 2 to peg 3. In this whole procedure, we can act as
though the big disc doesn't exist, since it's guaranteed to be bigger than the others and
thus poses no problem. Just utilize the three-disc solution, switching the numbers around.

Good luck!

39

http://www.taoyue.com/tutorials/pascal/pas4e.html

(* Author: Tao Yue
 Date: 13 July 2000
 Description:
 Solves the Towers of Hanoi
 Version:
 1.0 - original version
*)

program TowersofHanoi;

var
 numdiscs : integer;

(**)

procedure DoTowers (NumDiscs, OrigPeg, NewPeg, TempPeg : integer);
(* Explanation of variables:
 Number of discs -- number of discs on OrigPeg
 OrigPeg -- peg number of the tower
 NewPeg -- peg number to move the tower to
 TempPeg -- peg to use for temporary storage
*)

begin
 (* Take care of the base case -- one disc *)
 if NumDiscs = 1 then
 writeln (OrigPeg, ' ---> ', NewPeg)
 (* Take care of all other cases *)
 else
 begin
 (* First, move all discs except the bottom disc
 to TempPeg, using NewPeg as the temporary peg
 for this transfer *)
 DoTowers (NumDiscs-1, OrigPeg, TempPeg, NewPeg);
 (* Now, move the bottommost disc from OrigPeg
 to NewPeg *)
 writeln (OrigPeg, ' ---> ', NewPeg);
 (* Finally, move the discs which are currently on
 TempPeg to NewPeg, using OrigPeg as the temporary
 peg for this transfer *)
 DoTowers (NumDiscs-1, TempPeg, NewPeg, OrigPeg)
 end
end;

(**)

begin (* Main *)
 write ('Please enter the number of discs in the tower ===> ');
 readln (numdiscs);
 writeln;
 DoTowers (numdiscs, 1, 3, 2)
end. (* Main *)

40

Data Types

You can declare your own ordinal data types. You do this in the type section of your
program:

type
 datatypeidentifier = typespecification;

One way to do it is by creating an enumerated type. An enumerated type specification has
the syntax:

(identifier1, identifier2, ... identifiern)

For example, if you wanted to declare the months of the year, you would do a type:

type
 MonthType = (January, February, March, April,
 May, June, July, August, September,
 October, November, December);

You can then declare a variable:

var
 Month : MonthType;

You can assign any enumerated value to the variable:

Month := January;

All the ordinal functions are valid on the enumerated type. ord(January) = 0, and
ord(December) = 11.

A few restrictions apply, though: enumerated types are internal to a program -- they can
neither be read from nor written to a text file. You must read data in and convert it to an
enumerated type. Also, the idenfier used in the type (such as January) cannot be used in
another type.

One purpose of an enumerated type is to allow you, the programmer, to refer to
meaningful names for data. In addition, enumerated types allow functions and procedures
to be assured of a valid parameter, since only variables of the enumerated type can be
passed in and the variable can only have one of the several enumerated values.

A subrange type is defined in terms of another ordinal data type. The type specification is:

lowest_value .. highest_value

where lowest_value < highest_value and the two values are both in the range of another
ordinal data type.

For example, you may want to declare the days of the week as well as the work week:

41

type
 DaysOfWeek = (Sunday, Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday);
 DaysOfWorkWeek = Monday..Friday;

You can also use subranges for built-in ordinal types such as char and integer.

Suppose you wanted to read in 5000 integers and do something with them. How would
you store the integers?

You could use 5000 variables, lapsing into:

 aa, ab, ac, ad, ... aaa, aab, ... aba, ...

But this would grow tedious (after declaring those variables, you have to read values into
each of those variables).

An array contains several storage spaces, all the same type. You refer to each storage
space with the array name and with a subscript. The type definition is:

 type
 typename = array [enumerated_type] of another_data_type;

The data type can be anything, even another array. Any enumerated type will do. You can
specify the enumerated type inside the brackets, or use a predefined enumerated type. In
other words,

 type
 enum_type = 1..50;
 arraytype = array [enum_type] of integer;

is equivalent to

 type
 arraytype = array [1..50] of integer;

Aside: This is how strings are actually managed internally &mdash as arrays. Back before
modern Pascal compilers added native support for strings, programmer had to handle it
themselves, by declaring:

 type
 String = packed array [0..255] of char;

and using some kind of terminating character to signify the end of the string. Most of the
time it's the null-character (ordinal number 0, or ord(0)). The packed specifier means that
the array will be squeezed to take up the smallest amount of memory.

Arrays of characters representing strings are often referred to as buffers, and errors in
handling them in the C or C++ programming languages may lead to buffer overruns. A
buffer overrun occurs when you try to put, say, a 200-character string into a 150-length
array. If memory beyond the buffer is overwritten, and if that memory originally contained
executable code, then the attacker has just managed to inject arbitrary code into your

42

system. This is what caused the famous Slammer worm that ran rampant on the Internet
for several days. Try it in Pascal and see what happens.

Arrays are useful if you want to store large quantities of data for later use in the program.
They work especially well with for loops, because the index can be used as the subscript.
To read in 50 numbers, assuming the following definitions:

 type
 arraytype = array[1..50] of integer;

 var
 myarray : arraytype;

use:

 for count := 1 to 50 do
 read (myarray[count]);

Brackets [] enclose the subscript when referring to arrays.

 myarray[5] := 6;

You can have arrays in multiple dimensions:

 type
 datatype = array [enum_type1, enum_type2] of datatype;

The comma separates the dimensions, and referring to the array would be done with:

 a [5, 3]

Two-dimensional arrays are useful for programming board games. A tic tac toe board
could have these type and variable declarations:

 type
 StatusType = (X, O, Blank);
 BoardType = array[1..3,1..3] of StatusType;
 var
 Board : BoardType;

You could initialize the board with:

 for count1 := 1 to 3 do
 for count2 := 1 to 3 do
 Board[count1, count2] := Blank;

You can, of course, use three- or higher-dimensional arrays.

A record allows you to keep related data items in one structure. If you want information
about a person, you may want to know name, age, city, state, and zip.

To declare a record, you'd use:

 TYPE
 TypeName = record

43

 identifierlist1 : datatype1;
 ...
 identifierlistn : datatypen;
 end;

For example:

 type
 InfoType = record
 Name : string;
 Age : integer;
 City, State : String;
 Zip : integer;
 end;

Each of the identifiers Name, Age, City, State, and Zip are referred to as fields. You
access a field within a variable by:

 VariableIdentifier.FieldIdentifier

A period separates the variable and the field name.

There's a very useful statement for dealing with records. If you are going to be using one
record variable for a long time and don't feel like typing the variable name over and over,
you can strip off the variable name and use only field identifiers. You do this by:

 WITH RecordVariable DO
 BEGIN
 ...
 END;

Example:

 with Info do
 begin
 Age := 18;
 ZIP := 90210;
 end;

A pointer is a data type which holds a memory address. A pointer can be thought of as a
reference to that memory address, while a variable accesses that memory address
directly. If a variable is someone's phone number, then a pointer is the page and line
number where it's listed in the phone book. To access the data stored at that memory
address, you dereference the pointer.

To declare a pointer data type, you must specify what it will point to. That data type is
preceded with a carat (^). For example, if you are creating a pointer to an integer, you
would use this code:

 type
 PointerType = ^integer;

You can then, of course, declare variables to be of type PointerType.

44

Before accessing a pointer, you block off an area in memory for that pointer to access.
This is done with:

 New (PointerVariable);

To access the data at the pointer's memory location, you add a carat after the variable
name. For example, if PointerVariable was declared as type PointerType (from above),
you can assign the memory location a value by using:

 PointerVariable^ := 5;

After you are done with the pointer, you must deallocate the memory space. Otherwise,
each time the program is run, it will allocate more and more memory until your computer
has no more. To deallocate the memory, you use the Dispose command:
 Dispose(PointerVariable);

A pointer can be assigned to another pointer. However, note that since only the address,
not the value, is being copied, once you modify the data located at one pointer, the other
pointer, when dereferenced, also yields modified data. Also, if you free (or deallocate) a
pointer, the copied pointer now points to meaningless data.

What is a pointer good for? Why can't you just use an integer in the examples above
instead of a pointer to an integer? Well, the above is clearly a contrived example. The real
power of pointers is that, in conjunction with records, it makes dynamically-sized data
structures possible. If you need to store many items of one data type in order, you can use
an array. However, your array has a predefined size. If you don't have a large enough
size, you may not be able to accomodate all the data. If you have a huge array, you take
up a lot of memory when sometimes that memory is not being used.

A dynamic data structure, on the other hand, takes up only as much memory as is being
used. What you do is to create a data type that points to a record. Then, the record has
that pointer type as one of its fields. For example, stacks and queues can all be
implemented using this data structure:

 type
 PointerType = ^RecordType;
 RecordType = record
 data : integer;
 next : PointerType;
 end;

Each element points to the next. The last record in the chain indicates that there is no next
record by setting its next field to a value of nil.

45

Final words

This concludes my informal course in Pascal. You should have a reasonable
understanding of the basics of Pascal by now, though this tutorial is by no means
comprehensive.

Compiler manuals contain a wealth of information about additional syntactical elements
and predefined routines for use in your programs. Here's the Free Pascal Compiler
manual. The Reference guide contains information about the system unit which is used
automatically with the program, while the units reference manual gives an idea of how
many routines there are for accomplishing all sorts of tasks.

Good luck in your future Pascal endeavors! And when you move on to other languages
and find yourself using PascalCasing for variable names, remember how Pascal has left
an indelible mark on computer programming even though other languages have risen to
prominence.

46

http://www.freepascal.org/docs-html/
http://www.freepascal.org/docs-html/

